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Graphing Values for Individual Dyad Members over Time 

 In the main text, we recommend graphing physiological values for individual dyad 

members over time to aid in the decision regarding interval length. If responding is relatively 

stable, shorter intervals may not be necessary. Here, we provide syntax for graphing individual 

estimates. In the first step, researchers need to sort their data by person (we use “id_1_00”). In 

the second step, researchers plot physiological values (here “pepreact_R”) by time and join the 

values by a straight line.  

 

Figure S1: Syntax for graphing values for individual dyad members over time. 

Lag Length 

To create lagged receiver and sender physiology variables, the SAS syntax in Figure  

S2 can be used. Once the file is sorted by participant and time (line 3), lagged variables can be 

created (lines 4 and 6). Once the lagged variables are created, the variables should be marked as 

missing for the first time point (lines 5 and 7). Without this step, the lagged variables at the first 

time point would have the values of the previous participant at the last time point. For example, 

if Participant 3 had a PEP value of -5 at the last time point, Participant 4 would have a PEP value 

of -5 at the first time point. Marking the first time point as missing will eliminate this problem. In 
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lines 8 through 11 of this syntax, we look at the mean values for the lagged variables at every 

time point, making sure that there are no lagged data at the first time point.   

If there are multiple phases within a study (e.g., a baseline interval, a high-conflict 

interaction, and then a low-conflict interaction), researchers should lag variables within each 

phase. To do this, the file should be sorted by participant and time, lagged variables should be 

created, and then values at the first time point of each new phase should be marked as missing. 

This ensures that values from one interval are not used to predict values within another interval. 

 
 

Figure S2: Syntax for lagging variables. 

 

Test of Distinguishability 

When a data set contains all distinguishable dyads (e.g., every dyad has one partner in an 

experimental condition and one partner in a control condition, or all dyads contain one female 

partner and one male partner), one can conduct a formal test of “distinguishability” for the fixed 

and random effects. In the basic model, there are three fixed effects that may differ as a function 

of the distinguishing factor: the intercept, the stability path, and the influence path. To test 

whether these parameters differ as a function of the distinguishing variable, one must include the 

main effect of the distinguishing variable and moderate the stability and influence paths by the 

distinguishing variable. In terms of random effects, partners may differ in the variances for the 
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intercept, the stability path, and the influence path all possible within-person and between-dyad 

members’ covariances may also differ for the types of partners. Lastly, there may also be 

“heterogeneity of error variances” for the two dyad members. We illustrate how to compare 

models in which these parameters are forced to be equal across partners, to those in which these 

parameters are allowed to vary as a function of the distinguishing variable, in the supplemental 

material. We encourage researchers to conduct this test to find the most parsimonious model. For 

example, a research may find that in a data set with heterosexual couples, the husbands and 

wives’ error variances are homogeneous (and forcing them to be equal does not worsen the fit of 

the model), and so estimating a pooled error variance simplifies the model.  

To conduct a test of distinguishability, two models must be estimated: one model that 

treats dyads as distinguishable, and one that treats them as indistinguishable. Distinguishability 

can occur in the fixed effects and/or the random effects. Below we present the test of 

distinguishability using the data from Example 1 presented in the main text. In this example, 

gender is the distinguishing factor. We conduct a full test of distinguishability on the fixed and 

random effects at the same time (sometimes referred to as the omnibus test of distinguishability), 

but this test can be conducted to compare any effects in the model (e.g., just the fixed effects, just 

the random effects of the intercept, just the random effects of slopes, etc.).  

 In the two models presented in Figures S3 and S4, for the fixed effects, gender is 

included in three places: as a main effect, moderating the stability path, and moderating the 

influence path. These three effects are included in the example below in the syntax for the 

distinguishable case. Thus, there are three more fixed effects in the distinguishable case: gender, 

an interaction term of gender by the stability path, and an interaction term of gender by the 

influence path.  
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 For the random effects, gender can be used to estimate separate variances and separate 

covariances. In the example below, we estimate the random effect of the intercept, the stability 

path, and the influence path. For illustration purposes, we have trimmed out the covariances, but 

these can easily be added back into the model (and the test of distinguishability can be done on 

these, too). The distinguishable model therefore estimates two intercept variances (one for 

women, one for men), two random effects of the stability path (one for women, one for men), 

two random effects of influence (one for women, one for men), and two error variances (using 

CSH—compound symmetry heterogeneous, which gives separate error variances for the two 

partners, as compared to CS—compound symmetry—in the indistinguishable model). There are 

therefore four more random effects estimated in the distinguishable case: an error variance, 

intercept variance, stability slope variance, and influence slope variance.  

Taken together, two models will be estimated. The distinguishable model will test for 

moderation by the distinguishing factor at the level of the fixed effects and will also allow for 

separate error variances and covariances for men and women. In total, there are seven more 

parameters in the distinguishable model. Because these two models will be compared and 

changes have been made between them at the level of the fixed effects, ML (Maximum 

Likelihood) estimation must be used instead of the default method REML (Restricted Maximum 

Likelihood). The statement “METHOD = ML” can be added to the SAS syntax after 

“COVTEST.”  

 Once these models are estimated, a χ
2
 difference test can be computed by subtracting the 

deviances of the two models (called “ -2 Log Likelihood” under Fit Statistics). Because there is a 

difference of seven degrees of freedom between the distinguishable model and the 

indistinguishable model, a χ
2
 test with seven degrees of freedom can be estimated. One can then 
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look up the critical value of a χ
2   

with seven degrees of freedom (which is 14.067). The deviance 

for the distinguishable model is 23870.2, and the deviance for the indistinguishable model is 

23925.1. The χ
2 

difference between these two models is 54.9, which, with 7 degrees of freedom, 

is statistically significant. Thus, we would need to treat dyads as distinguishable because setting 

parameter constraints that force dyads to be indistinguishable significantly worsened the fit of 

the model. If the χ
2 

difference test was not significant, dyads could be treated as indistinguishable 

as setting parameter constraints that force dyads to be indistinguishable would not have 

significantly worsened the fit of the model.  

 

Figure S3: Syntax for the distinguishable model. 
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Figure S4: Syntax for the indistinguishable model. 
 

Random Effects 

In an ideal world, the random effects in one’s model would be fully saturated, resulting in 

24 random effects for distinguishable dyads (six variances: parameters 1, 2, 3, 4, 5, and 6 in 

Table S1; six within-person covariances: 7, 8, 9, 10, 11, and 12; nine between-person 

covariances: 13, 14, 15, 16, 17, 18, 19, 20, and 21; two residual variances and one common 

covariance) or 14 random effects for indistinguishable dyads (three variances: parameters 1, 2, 

and 3 in Table S2; three within-person covariances: parameters 4, 5, and 6; six between-person 

covariances: 7, 8, 9, 10, 11, and 12; one residual variance and one common covariance). 
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Table S1. Possible random effects parameters in a stability and influence model with 

distinguishable dyads.   

 

 1. 2. 3. 4. 5. 6. 

1. Intercept for P1 1      

2. Intercept for P2 13 2     

3. Slope for receiver 

PEP (timet-1) for P1 
7 18 3    

4. Slope for receiver 

PEP (timet-1) for P2 
16 10 14 4   

5. Slope for sender PEP 

(timet-1) for P1 
8 19 9 21 5  

6. Slope for sender PEP 

(timet-1) for P2 
17 11 20 12 15 6 

 

Table S2. Possible random effects parameters in a stability and influence model with 

indistinguishable dyads.   

 

 1. 2. 3. 4. 5. 6. 

1. Intercept for P1 1      

2. Intercept for P2 7 1     

3. Slope for receiver 

PEP (timet-1) for P1 
4 10 2    

4. Slope for receiver 

PEP (timet-1) for P2 
10 4 8 2   

5. Slope for sender PEP 

(timet-1) for P1 
5 11 6 12 3  

6. Slope for sender PEP 

(timet-1) for P2 
11 5 12 6 9 3 

 

Stability and Influence Model with Indistinguishable Dyads 

 To demonstrate an analysis with indistinguishable dyads, we analyze data from a study 

similar to that of Example 1, where the only methodological difference is that all dyads were 

composed of two female participants. The primary difference in this analysis is that fixed and 

random effects are estimated to be the same across both members of the dyad (see Figures S5 

and S6 for syntax). For the fixed effects, this is done by removing gender and any interactions 

with gender as predictor terms. For the random effects, this is done by creating a matrix which 

specifies constraints for the (co)variance parameters. In this example, we specify seven random 
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effects (see Table S3): variance in the intercepts (1), variance in receiver lag (2), between-person 

covariance of intercepts (3), between-person covariance of receiver lag (4), within-person 

covariance of intercepts with receiver lag (5), between-person covariance of intercepts with 

receiver lag (6), and variance of sender lag (7). Note that these random effects are the same as 

the ones specified in Example 1, but there are no longer separate random effects for each 

member of the dyad (as there were for men and women in Example 1).  

Table S3. Variance covariance matrix with parameter constraints for the analysis of repeated 

measures indistinguishable dyadic data. P1 = partner 1; P2 = partner 2.  

 

 1. 2. 3. 4. 5. 6. 

1. Intercept for P1 1 3 5 6   

2. Intercept for P2  1 6 5   

3. Slope for receiver 

PEP (timet-1) for P1 
  2 4   

4. Slope for receiver 

PEP (timet-1) for P2 
   2   

5. Slope for sender PEP 

(timet-1) for P1 
    7  

6. Slope for sender PEP 

(timet-1) for P2 
     7 

 

 
Figure S5. Syntax to set the parameter constraints outlined in Table S3. 
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Because gender is not a distinguishing variable in this example, it is no longer included in 

the MODEL statement as a fixed effect, nor does it interact with the stability or influence slopes. 

We use three new variables in this analysis: 1) partnum_1, which arbitrarily codes one dyad 

member as 1 and one dyad member as 2, 2) I1, which is coded 1 when partnum_1=1 and 0 when 

partnum_1=2, and 3) I2, which is coded 0 when partnum_1=1 and 1 when partnum_1=2.  

 

 

Figure S6. Syntax for a two-level crossed model with indistinguishable dyads.  

  In lines 2 and 7, “partnum_1” replaces “gender_class” as the variable that distinguishes 

between the dyad members of each dyad. In line 5, we list the variables to be used in the 

variance covariance matrix shown in Table S3. In line 6, TYPE=lin(7) specifies seven error 

covariances to be estimated for the variables listed and “LDATA=hhh” specifies that the matrix 

“hhh” will be used to place constraints on these parameters such that each covariance is the same 

for both members of the dyad. In line 8, The PARMS statement gives starting values for the 

covariance parameters. There must be a value for each covariance parameter in the model; in this 

case, there are nine: seven covariances, one common covariance, and one residual covariance. 

These can be adjusted to help the model converge.  

Results for the fixed effects, which can be interpreted in the same manner as those in 

Example 1, are shown in Table S4. In this example, both the stability and influence paths are 

significant, indicating that receivers’ PEP reactivity is both a function of their own PEP 

reactivity at the prior time point and senders’ PEP reactivity at the prior time point. Influence in 
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this example is positive, meaning that higher values of sender PEP reactivity at one time point 

are associated with higher values of receiver PEP reactivity at the following time point. 

Table S4. Fixed effects estimates. 

Effect Estimate SE Df T p Lower CI Upper CI 

Intercept -1.78 0.46 23.2 -3.87 < .001 -2.74 -0.83 

pep_lag_RC 0.39 0.03 26.2 13.39 < .001 0.33 0.45 

pep_lag_RC 0.05 0.02 41.4 2.05 .046 0.001 0.09 

 

The estimates for the random effects are shown in Table S5. Note that the output from 

SAS will list the random effects as “LIN(1)”, “LIN(2)”, and so on. These numbers correspond to 

the matrix specified in Figure S5. These results allow us to answer questions such as whether 

there is variance in the extent to which participants are stable in PEP reactivity (yes), whether 

there is variance in the extent to which participants are influenced in their PEP reactivity (no), 

and whether PEP reactivities of two dyad members at the same time point are correlated (yes).  
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Table S5. Random effects estimates. 

Random effects ([co-]variances) Estimate SE z p 

Variance of intercept 12.99 3.00 4.32 < .001 

Variance of receiver lag 0.03 0.01 3.66 < .001 

Between-person covariance of one partner’s intercept with the 

other partner’s intercept 
-1.79 2.88 -0.62 0.53 

Between-person covariance of one partner’s receiver lag and the 

other partner’s sender lag 
-0.01 0.01 -0.59 0.56 

Within-person covariance of intercept with receiver lag -0.17 0.12 -1.40 0.16 

Between-person covariance of one partner’s intercept with the 

other partner’s receiver lag 
-0.21 0.13 -1.65 0.10 

Variance of sender lag 0.01 0.01 1.67 0.10 

Common covariance 1.84 0.37 5.03 < .001 

Residual variance 10.24 0.43 23.90 < .001 

 

Graphing Influence  

When physiological influence changes over time or is moderated by behaviors, a figure 

of these results may aid in presentation. To graph influence, only the influence coefficient and 

coefficients for interaction terms including influence should be used to create predicted influence 

values. For a basic example, we use the results from Table 10 to create the graph in Figure S7. 

The Y axis represents predicted physiological influence values, which are slope values. Sender 

questions asked are represented on the X axis, at a low value (one standard deviation below the 

mean, which is -1.49) and at a high value (one standard deviation above the mean, which is 

1.49). We only use the influence coefficients to create our four predicted values (influence at low 

sender questions asked and influence at high sender questions asked for both males and females): 

“pep_lag_SC,” “gender*pep_lag_SC,” “qasked_SC*pep_lag_SC,” and 

“gender*qasked_SC*pep_lag_SC.” Recall that gender is coded as -1 for females and 1 for males. 

We do not need to use the influence by receiver questions asked coefficients because the figure 
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we are creating is when receiver questions asked is at its mean, which equals zero. Therefore, for 

females, influence at low sender questions asked is calculated as (.02)+(.04*-1)+(-.01*-1.49)+(-

.01*-1*-1.49) and influence at high sender questions asked is calculated as (.02)+(.04*-1)+(-

.01*1.49)+(-.01*-1*1.49). For males, influence at low sender questions asked is calculated as 

(.02)+(.04*1)+(-.01*-1.49)+(-.01*1*-1.49) and influence at high sender questions asked is 

calculated as (.02)+(.04*1)+(.01*1.49)+(-.01*1*1.49). 

 

Figure S7. Physiological influence as a function of receiver gender and sender questions asked. 

 

Power Analysis 

We walk through a power analysis in SAS using data collected from 34 dyads composed 

of one man and one woman each across ten time points. This sample of 34 dyads is used as a 

pilot study to plan the sample size for the full study. The dependent variable in the following 

model is receiver PEP reactivity (“pepreact_R”). Receivers’ own PEP reactivity at the prior time 

point (referred to as receiver lag) provides the stability path (“Zpep_lag_R”). Senders’ PEP 

reactivity at the prior time point (referred to as sender lag) provides the influence path 

(“Zpep_lag_S”).  
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The first step of the power analysis is to run the model one intends to use on the full 

sample of dyads on this pilot sample of 34 dyads. In Figure S8, we present this model. Note that 

for ease of presentation, we include only the stability and influence paths as fixed effects and 

estimate only a random stability path, but additional effects can be added to the model. “Dyad” is 

a unique identification number for each dyad, which is the same for each member of a dyad. 

“Obs_id” is a unique identification number for each pair of observations that occur at the same 

time point for the same dyad. It is calculated as “time + nt(dyad-1)” where “time” represents the 

time point of the observation, “nt” is the number of time points, and “dyad” is the unique 

identification number for each dyad. “Gender_class” is a variable representing gender, which is 

coded as -1 for females and 1 for males. “Male” is coded as 0 for females and 1 for males and 

“female” is coded as 0 for males and 1 for females. The receiver lag and sender lag variables 

have been standardized before conducting the analysis. The reason for this will become clear in 

the following step.  

 
Figure S8. Syntax for Step 1 of the power analysis: conducting a two-level crossed model on a 

pilot sample of data.   

 

 Once the pilot data are analyzed, that information can be used to simulate data for 1000 

hypothetical studies. In Figure S9, we show syntax for how to do this. In line 3, we chose an 

arbitrary number for the random number generator so that the simulation will output the same 

values every time. In lines 4 through 6, we specified the value for the intercept (line 4), the 

coefficient for receiver lag (line 5), and the coefficient for sender lag (line 6) that we obtained 

from the model in Figure S9. Note that the values in lines 4 through 6 are unstandardized. We 
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specified the value for the random receiver lag slope in line 7 for women and in line 8 for men. 

We specified the residual variance for women in line 9 and for men in line 10. The common 

covariance is listed in line 11.  

In line 12, we indicated the number of samples to be generated, and in line 14, we 

indicated the number of dyads for which we wish to obtain power estimates. Initially, we suggest 

using the same number of dyads and time points in one’s pilot study to check the estimates, 

standard errors, and degrees of freedom obtained in the power analysis against the results 

obtained from the pilot study. This can help to identify mistakes in one’s syntax at this stage of 

the power analysis. In lines 15 and 16, we created the unique receiver lag slopes for each dyad—

once for women and once for men. We indicated that there are two people per dyad in line 18, 

and in lines 19 through 24, we assigned those individuals to the appropriate value for the 

variables “gender_class,” “male,” and “female.” 

In line 25, we specified that each person has ten time points of data (as in the pilot study). 

We chose numbers randomly from a standard normal distribution in lines 26 and 27 to be the 

receiver and sender lag variables. Because these numbers are selected from a standard normal 

distribution, we used standardized receiver and sender lag variables in the model conducted on 

the pilot data to ensure that our simulated data matches our pilot data as closely as possible. In 

lines 29 and 31, we generated a residual for women and men, and in lines 30 and 32, we 

specified the model, as used in Step 1 on the pilot data. Once this step has been completed, we 

recommend opening up the new file that has been generated (here it is called “example1”) and 

checking that the data appear as you anticipated—for example, that there are 34 dyads per 

sample, 2 people per dyad, and 10 time points per person, with unique X1 and X2 values at each 

time point. 
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Figure S9. Syntax for Step 2 of the power analysis: simulating data for 1000 hypothetical 

studies.   

 

Once the data have been simulated, Step 3 is to analyze each of those 1000 samples 

individually. We present syntax for this step in Figure S10. Note that the model directly 

replicates the model specified in the first step in Figure S8. Lines 9 and 10 of this syntax create 

two new data files—one with the results for the fixed effects for the analysis conducted on each 

sample and one with the results for the random effects for the analysis conducted on each 

sample.  
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Figure S10. Syntax for Step 3 of the power analysis: analyzing the simulated data for the 1000 

hypothetical studies.   

 

The final step in this process is to go through the two new files created and count the 

number of times that an effect is significant (out of the 1000 samples). Syntax for this purpose is 

presented in Figure S11. Lines 1 through 6 provide syntax for looking at the fixed effects, and 

lines 7 through 16 provide syntax for looking at the random effects. For every two lines of 

syntax, SAS will output data that indicate the average estimate, standard error, degrees of 

freedom (for fixed effects), and the average amount of times an effect was significant. Figure 

S12 presents this output for X2 (produced by lines 5 and 6 of the syntax in Figure S11), which is 

the sender lag variable. The value in the “sig” line represents the power for the specified effect, 

given the parameters specified. In Figure S12, the power for detecting a significant effect of X2 

is 48.10%, given the parameters specified.  
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Figure S11. Syntax for Step 4 of the power analysis: counting the number of times each effect is 

significant.   

 

 

Figure S12. SAS output from lines 5 and 6 of Figure S11 in Step 4 of the power analysis. 

 

As noted before, when first conducting a power analysis on a sample of data, we suggest 

checking the estimates, standard errors, and degrees of freedom obtained in the power analysis 

against the results obtained from the pilot study to help identify errors in one’s syntax. If the 
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results here match what was found on the sample of data, one can then move ahead and change 

parameters of the model in Step 2 (for example, number of dyads, time points, size of effects, 

etc.) to examine how these changes will impact the power obtained for various effects. If 

researchers have difficulty obtaining results that match what they found with their sample data, 

we recommend simplifying the model as much as possible, checking that results match, and then 

adding complexity from there. One reason results may not match is because of missing data. If 

there are missing data in the pilot study but missing data are not simulated in Step 2 (as we did 

not do here), researchers will find that the degrees of freedom will be different. Furthermore, if 

the variables in one’s pilot study are not normally distributed but values in the second step of the 

power analysis are chosen from a standard normal distribution, the results may also be slightly 

mismatched.  

 

 


